Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
نویسندگان
چکیده مقاله:
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the exponential type of the processes such as exponential Levy process. Also, it can be said MEMM is a kind of important sampling method where the probability measure with minimal relative entropy replaces the main probability. Then we are going to obtain VaR and CVaR by Monte-Carlo simulation. For this purpose, we have to calculate option price, implied volatility and returns under MEMM and then obtain risk measurement by proposed algorithm. Finally, this model is simulated for exponential variance gamma process. Next, we intend to develop two theorems for implied volatility under minimal entropy martingale measure by examining the conditions. These theorems consider the asymptotic implied volatility for the case that time to maturity tends to zero and infinity.
منابع مشابه
The Minimal Entropy Martingale Measure and Hedging in Incomplete Markets
The intent of these essays is to study the minimal entropy martingale measure, to examine some new martingale representation theorems and to discuss its related Kunita-Watanabe decompositions. Such problems arise in mathematical finance for an investor who is confronted with the issues of pricing and hedging in incomplete markets. We adopt the standpoint of a ra tional investor who principally...
متن کاملMimimal Relative Entropy Martingale Measure of Birth and Death Process
In this article, we investigate the MEMM (Minimal relative Entropy Martingale Measure) of Birth and Death processes and the MEMM of generalized Birth and Death processes. We see that the existence problem of the MEMM is reduced to the problem of solving the corresponding Hamilton-Jacobi-Bellman equation.
متن کاملImplied and Local Volatilities under Stochastic Volatility
For asset prices that follow stochastic-volatility diffusions, we use asymptotic methods to investigate the behavior of the local volatilities and Black–Scholes volatilities implied by option prices, and to relate this behavior to the parameters of the stochastic volatility process. We also give applications, including risk-premium-based explanations of the biases in some näıve pricing and hedg...
متن کاملThe minimal entropy martingale measure in a market of traded financial and actuarial risks
In arbitrage-free but incomplete markets, the equivalent martingale measure Q for pricing traded assets is not uniquely determined. A possible approach when it comes to choosing a particular pricing measure is to consider the one that is closestto the physical probability measure P, where closeness is measured in terms of relative entropy. In this paper, we determine the minimal entropy marti...
متن کاملNormalization for Implied Volatility
We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 4
صفحات 1- 22
تاریخ انتشار 2020-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023